大家好,我是小典,我来为大家解答以上问题。什么是三角形的外角,什么是三角形,很多人还不知道,现在让我们一起来看看吧!
由同一平面内,且不在同一直线上的三条线段,首尾顺次相接所得到的封闭的内角和为180度的几何图形叫做三角形(triangle),符号为△。三角形是几何图案的基本图形。
按角分
判定法一:
锐角三角形:三角形的三个内角都小于90度。
直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。
钝角三角形:三角形的三个内角中有一个角大于90度。[2]
判定法二:
锐角三角形:三角形的三个内角中最大角小于90度。
直角三角形:三角形的三个内角中最大角等于90度。
钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
判断方法
由[3] 余弦定理延伸而来
若一个三角形的三边a,b,c (a≥b≥c>0) 满足:
1.b²+c²>a²,则这个三角形是锐角三角形;
2.b²+c²=a²,则这个三角形是直角三角形;
3.b²+c²<a²,则这个三角形是钝角三角形。
按边分
不等边三角形;不等边三角形,数学定义,指的是三条边都不相等的三角形叫不等边三角形。
等腰三角形;等腰三角形(isosceles triangle),指两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。等腰三角形底边上的垂直平分线到两条腰的距离相等。等腰三角形的一腰上的高与底边的夹角等于顶角的一半。等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。等腰三角形中腰的平方等于高的平方加底的一半的平方。等腰三角形的腰与它的高的关系,直接的关系是:腰大于高。间接的关系是:腰的平方等于高的平方加底的一半的平方。
等边三角形。等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
[4]
本文到此讲解完毕了,希望对大家有帮助。